Density:

Density $=$ Mass (kg)
$\left(\mathrm{kg} / \mathrm{m}^{3}\right)$ Volume (m^{3})
Calculating the density of an irregular shape, can be done using a Eureka can and measuring the volume of water displaced.

Internal Energy

The energy in a substance is stored in its particles, this is called internal energy.

Internal energy = kinetic energy + potential energy.

Temperature: This is linked to the kinetic

State of matter	Diagram of structure	Movement of particles	Can it be compressed?	Density	energy of the gas. The higher its
Solid	888	Vibrate around a fixed position. They don't have enough energy to move apart	$\begin{aligned} & \text { No. the particles have no } \\ & \text { space between them to move } \\ & \text { into. } \end{aligned}$	High, there are lots of particles in a unit of area.	higher its kinetic energy.
Liquid		They have enough energy to are still attracted to each other	No, the particles have no space between them to move into.	Quite high, there are lots of particles in a unit of area.	If the temperature remains constant so does the kinetic
Gas	0	The have so much energy that they are not atrracted to each other. Collisisions with containers couse containers cause pressure	Yes, the particles have lots of space between them to move into.	Low, there are few particles in a unit of area.	energy of the particles.

Specific Latent Heat

The specific latent heat of a substance is the energy needed to change 1 kg of the substance with no change in state.

Energy $=$ Mass \times Specific Latent Heat

$E=m \times L$
Specific heat of fusion: when turning from a solid into a liquid
Specific heat of vapourisation: when turning from a liquid into gas

Pressure and volume

Pressure \times Volume $=$ constant

(Pa) $\quad\left(\mathrm{m}^{3}\right)$
so $P_{1} \times V_{1}=P_{2} \times V_{1}$
Increasing the volume of a gas (making the container bigger) whilst keeping the temperature constant will decrease the pressure of the gas.

Changing State

When a material changes state (melting or boiling) its internal energy increases, but its temperature does not. This means that its kinetic energy remains constant until it has changed state.

Temperature and pressure

Increasing the temperature of a gas increases the kinetic energy of the gas particles, this increases the number of collisions with the surface, this increases the pressure acting on the sides of the container.

Particles move in different directions with a range of speeds.

As the particles hit the side of the container they create a net force which acts at right angles to the

