AQA Science: Physics Unit 1 Revision Notes - Energy Energy CANNOT be created or destroyed <u>Gravitational Energy</u> $E_p = M \times G \times h$

Energy types * Gravitational Potential - Increased with

height * Kinetic Energy - Increased with speed * Elastic Energy - Increased when stretched or

squashed * Thermal Energy - Gained when heated, often lost (wasted) to the surroundings

Energy Transfers

* Mechanically - When a force is applied * Heating - When an object is heated

* Electrically - When an object is powered by electricity

A ball rolling down a hill: Gravitational Potential

Energy is turned mechanically into kinetic energy Specific heat capacity (SHC)

The amount of energy needed to heat a 1Kg material by 1°C.

Heat Energy = Mass \times SHC \times Change in Temp $(Kg) (J/Kg^{\circ}C) (^{\circ}C)$ $C = \frac{E}{mx\Delta\theta} \qquad m = \frac{E}{c x \Delta\theta} \qquad \Delta\theta = \frac{E}{mxc}$

This experiment only gives an estimate for the values calculated as energy is lost to the

surroundings.

Heat Transfer 1. The higher the thermal conductivity of a material the higher the rate of heat transfer by conduction.

Calculating Velocity $E_n = M \times G \times H$ $= 2 \times 10 \times 3 = 60J$

kinetic energy it has.

 $E_p = E_k \Rightarrow E_k = 60J$

3m $V = \sqrt{\frac{Ek}{\frac{1}{2}xm}} = \sqrt{\frac{60}{\frac{1}{2}x2}} = 7.7 \text{m/s}$

(J) (Kg) (N/Kg) (m)

(m/s)

2Kg

The higher an object or the more mass it has

(Kg)

the more gravitational energy it has.

<u>Kinetic Energy</u> $E_k = \frac{1}{2} \times \text{mass} \times \text{Velocity}^2$

The faster and heavier an object the more

Renewable Sources of electricity ALL turn a turbine to turn a generator.

* Wind (Wind turns a turbine)

* Hydroelectric (water turns a turbine) * Waves/Tide (The sea turns a turbine)

* Geothermal (Heat from volcanoes used to boil

* Biomass (Living material burnt to boil water)

Advantages of ALL *Don't give out CO2 which causes global warming

water - make steam - turn a turbine)

Disadvantages They are all more expensive than fossil fuels * Wind - Not always windy

* Renewable (will NOT run out)

* Hydroelectric - Can damage habitats * Waves/Tides - Can damage habitats * Geothermal - Only a few places on Earth * Biomass - Carbon neutral (gives out CO2 when

hurnt)

Extension = Stretched length - original length The energy stored in a spring can be calculate:

Ruler

Springs

extends.

it is.

Power = Energy(J)

When you add a force

(weight) to a spring it

 $E_e = \frac{1}{2} \times \text{spring constant } \times \text{extension}^2$ (N/m)(m) Power is a measure of how quickly energy is

Time (s) (W) Electrical energy

used. The shorter the time the more powerful

Efficiency = $\frac{Useful\ Energy\ Out}{Total\ Energy\ In} \times 100$ Efficiency = $\frac{Useful\ Power\ Out}{Total\ Power\ In} \times 100$

Answers for efficiency must be written as a

percentage or a decimal Fa 80% or 0.8